
LINGUISTIC AND COMPUTATIONAL SEMANTICS·

Brian Cantwell Smith
XEROX Palo Alto Research Center

3333 Coyote Hill Road. Palo Alto. CA 94304

ABSTRACf

We argue that because the very concept of computation rests on
notions of interpretation, the semantics of natural languages and the
semantics of computational formalisms are in the deepest sense the
same subject. The attempt to use computational formalisms in aid of
an explanation of natural language semantics, therefore, is an
enterprise that must be undertaken with particular care. We descnbe
a framework for semantical analysis that we have used in the
computational realm, and suggest that it may serve to underwrite
computationally-oriented linguistic ser..antics as well. The major
feature of this framework is the explicit recognition of both the
declarative and the procedural import of meaningful expressions; we
argue that whereas these two viewpoints have traditionally been
taken as alternative. any comprehensive semantical theory must
account for how both aspects of an expression contribute to its
overall significance.

We have argued elsewhere1 that the distinguishing mark of
those objects and processes we call compulalional has to do with
attributed semantics: we humans find computational processes
coherent exactly because we attach semantical significance to their
behaviour. ingredients, and so forth. Put another way. computers,
on our view. are those devices that we understand by deploying our
Iinguislic facullies. For example. the reason that a calculator is a
computer, but a car is not. is that we take the ingredients of the
calculator to be symbolic (standing. in this particular case, for
numbers and functions and so forth), and understand the interactions
and organisation of the calculator in terms of that interpretation (this
part divides. this part represenls Ihe sum. and so on). Even though
by and large we are able to produce an explanation of the behaviour
that does not rest on external semantic attribution (this is the
fomlalily condilion mentioned by Fodor. Haugeland. and others2),

we nonetheless speak. when we use computational terms, in terms of
this semantics. These semantical concepts rest at the foundations of
the discipline: the particular organisations that computers have
their computational raison d'elre - emerge not only from their
mechanical structure but also from their semantic interpretability.
Similarly. the terms of art employed in computer science - program.
compiler. implemelliation, interpreter, and SO forth - will ultimately
be definable only with reference to this attributed semantics; they
will not. on our view. ever be found reducible to non-semantica1
predicates.3

9

This is a ramifying and problematic position. which we cannot
defend here.4 We may simply note, however. the overwhelming
evidence in favour of a semantical approach manifested by everyday
computational language. Even the simple view of computer science
as the study of symbol manipulalio/1s reveals this bias. Equally
telling is the fact that programming languages are called languages.
In addition, language-derived concepts like name and reference and
semanlics permeate computational jargon (to say nothing of
inlerpreler, value, variable, memory, expression, idenlifier and so on)
- a fact that would be hard to explain if semantics were not
crucially involved. It is not just that in discussing computation we
use language; rather, in discussing computation we use words that
suggest that we are also talking aboul linguistic phenomena.

The question we will focus on in this paper, very briefly, is
this: if computational artefacts are fundamentally linguistic, and if,
therefore. it is appropriate to analyse them in terms of formal
theories of semantics (it is apparent that this is a widely held view),
then what is the proper relationship between the so-called
compulalional semantics that results, and more standard linguistic
semantics (the discipline that studies people and their natural
languages: how we mean, and what we are talking about. and all of.
that good stum? And furthermore. what is it to use computational
models to explain natural language semantics, if the computational
models are themselves in need of semantical analysis? On the face
of it, there would seem to be a certain complexity that should be
sorted out

In answering these questions we will argue approximately as
follows: in the limit computational semantics and linguistic semantics
will coincide. at least in underlying conception, if not in surface
detail (for example some issues, like ambiguity. may arise in one case
and not in the other). Unfortunately, however. as presently used in
computer science the term "semantics" is given such an operational
cast that it distracts attention from the human attribution of
significance to computational structures.6 In contrast, the most
successful models of natural language semantics. embodied for
example in standard model theories and even in Montague's
program, have concentrated almost exclusively on referential or
denotalional aspects of declarative sentences. Judging only by
surface use. in other words, computational semantics and linguistic
semantics appear almost orthogonal in concern. even though they are
of course similar in slyle (for example they both usc meta-theoretic
mathematical techniques - functional composition. and so forth
to recursively specify the semantics of complex expressions from a

given set of primitive atoms anc fonnation rules). It is striking,
however, to observe two facts. First, computational semantics is
being pushed (by people and by need) more and more towards
declarative or referential issues. Second, natUral language semantics,
particularly in computationally-based studies, is fOCusing more and
more on pragmatic questions of use and psychological import. Since
computational linguistics operates under the computational
hypothesis of mind, psychological issues are assumed to be modelled
by a field of computational structures and the state of a processor
running over them; thus these linguistic concerns with ;'use" connect
naturally with the "operational" flavour of standard programming
language semantics. It seems not implausible, therefore - we betray
our caution with the double negative - that a unifying framework
lJlight be developed.

It will be the intent of this paper to present a specific, if
preliminary, proposal for such a framework. First, however, some
introductory comments. In a general sense of the tenn, semantics
can be taken as the study of the relationship between entities or
phenomena in a syntactic domain s and corresponding entities in a
semantic domain D, as pictured in the following diagram.

[IJs~y;n~ta~c~t:;:ic~D;om~a~i~n=sU-I--~$~---:>fSemantic Domain D I

We call the function mapping elements from the first domain into
elements of the second an interpretation (unction (to be sharply
distinguished7 from what in computer science is called an interpreter,
which is a different beast altogether). Note that the question of
whether an element is syntactic or semantic is a function of the point
of view; the syntactic domain for one interpretation function can
readily be the semantic domain of another (and a semantic domain
may of course include its own syntactic domain).

Not all relationships, of course, count as semantical; the
"grandmother" relationship fits into the picture just sketched, but
stakes no claim on being semantical. Though it has often been
discussed what constraints on such a relationship characterise
genuinely semantical ones (compositionality or recursive
specifiability, and a certain kind of formal character to the syntactic
domain, are among those typically mentioned), we will not pursue
such questions here. Rather, we will complicate our diagram as
follows. so as to enable us to characterise a rather large class of
computational and linguistic formalisms:

N1 and N2 are intended to be notational or communicational
expressions, in some externally observable and consensually
established medium of interaction. Sl'>:j a:; strings of characters,
streams of words, or sequences of display images on a computer
tenninal. The relationship e is an interpretation function mapping
notations into internal elements of some process over which the
primary semantical and processing regimens are defined. In first-

10

order logic. S1 and S2 would be something like abstract derivation
tree types of first-order formulae; if the diagram were applied to the
human mind, under the hypothesis of a formally encoded mentalese.
S1 and S2 would be tokens of internal mentalese, and e would be the
function computed by the "linguistic" faculty (on a view such as that
of FodorS). In adopting these terms we mean to be speaking very
generally; thus we mean to avoid, for example, any claim that tokens
of English are internalised (a term we will use for e) into
recognisable tokens of mentalese.. In particular. the proper account
of e for humans could well simply describe how the field of
mentalese structures, in some configuration, is transformed into some
other configuration. upon being presented with a particular English
sentence; this would still count, on our view, as a theory of e.

In contrast, ~ is the interpretation function that makes explicit
the standard denotational significance of linguistic terms. relating, we
may presume, expressions in s to the world of discourse. The
relationship between my mental token for T. S. Eliot, for example,
and the poet himself, would be formulated as part of~. Again, we
speak very broadly; ~ is intended to manifest what, paradigmatically,
expressions are about, however that might best be fonnulated (~

includes for example the interpretation functions of standard model
theories). '!', in contrast, relates some internal structures or states to
others - one can imagine it specifically as the fonnally computed
derivability relationship in a logic, as the function computed by the
primitive language processor in a computational machine (Le., as
LISP'S EVAL). or more generally as the function that relates one
configuration of a field of symbols to another, in terms of the
modifications engendered by some internal processor computing over
those states. (ell and '!' are named, for mnemonic convenience, by
analogy with philosophy and psychology, since a study of ~ is a study
of the relationship between expressions and the world - since
philosophy takes you "out of your mind", so to speak - whereas a
study of '" is a study of the internal relationships between symbols,
all of which, in contrast, are "within the head" of the person or
machine.)

Some simple comments. First, N10 N2, 510 S2, 010 and Oz need
not all necessarily be distinct: in a case where Sl is a self-referential
designator, for example, 01 would be the same as 51; similarly, in a
case where'!' computed a function that was designation-preserving,
then 0 1 and D2 would be identical. Secondly, we need not take a
stand on which of '" and ~ has a prior claim to being the semantics
of 51' In standard logic, '!' (Le., derivability: 1-) is a relationship, but
is far from a function, and there is little tendency to think of it as
seman/ical; a study of '" is called proof theory. In computational
systems, on the other hand, '" is typically much more constrained,
and is also. by and large, analysed mathematically in tenns of
functions and so forth, in a manner much more like standard model
theories. Although in this author's view it seems a little far-fetched
to call the internal relationships (the "use" of a symbol) seman/ical,
it is nonetheless true that we are interested in characterising both,
and it is unnecesary to express a preference. For discussion, we will
refer t(l'''''' "'semantics of a symbol or expression as its declarative
!!!Y!!!.!:!., ~~d refer to its "'-semantics as its procedural consequence.
We have heard it said in other quarters that "procedural" and
"declarative" theories of semantics are contenders;9 to the extent that
we have been able to make sense of these notions. it appears that we
need both.

It is possible to use this diagram to characterise a variety of
standard formal systems. In the standard models of the A-calculus.
for example, the designation function <l> takes 1\-expressions onto
functions; the procedural regimeni', usually consisting of a" and p
reductions, can be shown to be <I>-preserving. Similarly, if in a
standard predicate logic we take <I> to be (the inverse of the)
satisfaction relationship, with each element of S being a sentence or
set of sentences. and elements of D being those possible worlds in
which those sentences are true. and similarly take 'I' as the
derivability relationship, then soundness and completeness can be
expressed as the equation '1'(S1' S2) !II [01 \;;; O2], As for all formal
systems (these presumably subsume the computational ones), it is
crucial that 'I' be specifiable independent of <1>. The A-calculus and
predicate logic systems. furthermore. have no notion of a processor
With state; thus the appropriate'!' involves what we may call 10Cll1
procedural consequence. relating a simple symbol or set of symbols
to another set. In a more complex computational circumstance, as
we will see below, it is appropriate to characterise a more complex
f'!!'/l procedural consequence involving _not only simple expressions.
but fuller encodings of the state of various aspects of the
computational machine (for example. at least environments and
continuations in the typical computational case10).

An important consequence of the analysis illustrated in the
last figure is that it enables one to ask a question not typically asked
ir computer science. about the (<1>-) semantic character of the
function computed by'!'. Note that questions about soundness and
completeness in logic are exactly c;uestions of this type. In separate
n:search,ll we have shown, by subjecting it to this kind of analysis.
that computational formalisms can be usefully analysed in these
terms as well. In particular. we demonstrated that the universally
a;cepted LISP evaluation protocol is semantically confused, in the
fiJllowing sense: sometimes it preserves <I> (Le. <1>(it (S)) = <1>(S), and
sometimes it embodies <I> (i.e., i'(S) = 4>(S). The traditional LISP
notion of evaluation. in other words, conflates simplification and
reference relationships, to its peril (in that report we propose some
LISP dialects in which these two are kept strictly separate). The
current moral, however. is merely that our approach allows the
question of the semantical import of it to be asked.

As well as considering LISP. we may use our diagram to
~:laracterise the various linguistically oriented projects carried on
under the banner of "semantics". Model theories and formal
theories of language (we include Tarski and Montague in one sweep)
have concentrated primarily on <1>. Natural language semantics in
some quarters12 focuses on e - on the translation into an internal
medium - although the question of what aspects of a given
sentence must be preserved in such a translation are of course of
concern (no translator could ignore the salient properties. semantical
and otherwise. of the target language, be it mentalese or predicate
logic. since the endeavour would otherwise be without constraint).
Lewis (for one) has argued that the project of articulating e - an
endeavour he calls markerese semantics - cannot reatly be called
semantics at all,13 since it is essentially a translation relationship,
,Ithough it is worth noting that e in computational formalisms is not
dways trivial, and a case can at least be made that many superficial
aspects of natural language use. such as the resolution of indexicals,
may be resolved at this stage (if for example you say I am warm
then 1 may internalise your use of the first person pronoun into my
internal name for you).

11

Those artificial intelligence researchers working in knowledge
representation, perhaps without too much distortion, can be divided
into two groups: a) those whose primary semantical allegiance is to
<1>, and who (perhaps as a consequence) typically use an encoding of
first-order logic as· their representation language, and b) those who
concern themselves primarily with '1'. and who therefore (legitimately
enough) reject logic as even suggestive ('I' in logic - derivability
is a relatively unconstrained relationship, for one thing; secondly, the
relationship between the entailment relationship, to which
derivabitity is a hopeful approximation, and the proper "'I''' of
rational belief revision, is at least a matter of debate14).

Programming language semantics, for reasons that can at least
be explored, if not wholly explained, have focused primarily on '1',

although in ways that tend to confuse it with 4>. Except for PROLOG,
which borrows its <I> straight from a subset of first-order logic, and
the LISPS mentioned earlier,15 we have never seen a semantical
account of a programming language that gave independent accounts
of <I> and '1'. There are complexities, furthermore, in knowing just
what the proper treatment of general languages should be. In a
separate paper16 we argue that the notion program is inherently
defined as a set of expressions whose (<1>-) semantic domain includes
data structures (and set-theoretic entities built up over them). In
other words, in a computational process that deals with finance, say,
the general data structures will likely designate individuals and
money and relationships ainong them, but the terms in that part of
the process called a program wilt not designate these people and
their money, but wilt instead designa;,,) the data structures that
designate people and money (plus of course relationships and
functions over those data structures). Even on a declarative view like
ours, in other words, the appropriate semantic domain for programs
is built up over data structures - a situation strikingly like the
standard semantical accounts that take abstract records or locations
or whatever as elements of the otherwise mathematical domain for
programming language semantics. It may be that this fact that all
base terms in programs are meta-syntactic that has spawned the
confusion between operations and reference in the computational
setting.

AlthOUgh the details of a general story remain to be worked
out, the LISP case mentioned earlier is instructive. by way of
suggestion as to how a more complete computational theory of
language semantics might go. In particular, because of the context
relativity and non-local effects that can emerge from processing a
LISP expression, <I> is not specifiable in a strict compositional way. 'I'

- when taken to include the broadest possible notion that maps
entire configurations of the field of symbols and of the processor
itself onto other configurations and states - is of course recursively
specifiable (the same tact, in essence, as saying that LISP is a
deterministic formal calculus). A pure characterisation of 'I' without
a concomitant account of <1>, however, is unmotivated - as empty as
a specification of a derivability relationship would be for a calculus
for which no semantics had been given. Of more interest is the
ability to specify what we call a general significance function I, that
recursively specifies it and 4> together (this is what we were able to
do for LISP). In particular, given any expression S1, any
configuration of the rest of the symbols. and any state of the
processor, the function I witl specify the configuration and state that
would result (i.e., it will specify the use of st>. and also the
relationship to the world that the whole signifies. For example,

given a LISP expression of the form (+ 1 (PROG (SETQ A Zl All, :&

would specify that the whole expression designated the number
three. that it would return the numeral "3". and that the machine
would be left in a state in which the binding of the variable A was
changed to the numeral "z". A modest result; what is important is
merely a) that both declarative import and procedural significance
must be reconstructed in order to tell II full story about LISP; and b)
that they must be fonnulated together.

Rather than pursue this view in detail. it is helpful to set out
several points that emerge from analyses developed within this
framework:

a. In most programming languages, e can be specified
compositionally and independently of ~ or '" - this amounts
to a formal statement of Fodor's modularity thesis for
Ianguage.17 In the case of fonnal systems. e is often context
free and compositional. but not always (reader macros can
render it opaque. or at least intensional, and some languages
such as ALGOL are apparently context-sensitive). It is
noteworthy. however. that there have been computational
languages for Which e could not be specified indepently of '"
- a fact that is often stated as the fact that the programming
language "cannot be parsed except at runtime" (TECO and the
first versions of SMALLTALK had this character).

b. Since LISP is computational. it follows that a fUll account of
its if can be specified independent of~; this is in essence the
formality condition. It is important to bring out, however.
that a local version of if will typically not be compositional in
a modem computational formalism. even though such locality
holds in purely extensional context-free side-effect free
languages such as the A-calculus.

c. It is widely agreed that'" does not uniquely determine ~ (this
is the "psychology narrowly construed" and the concomitant
methodological solipsism of Putnam and Fodor and others18).

However this fact is compatible with our foundational claim
that computational systems are distinguished in virtue of
having some version of '" as part of their characterisation. A
very similar point can be made for logic: although any given
logic can (presumably) be given a mathematically-specified
model theory, that theory doesn't typically tie down what is
often called thil standard model or interpretation - the
interpretation that we usc. This fact does not release us.
however, from positing as a candidate logic only a formalism
that humans can interpret.

d. The declarative interpretation '" cannot be wholly determined
independent of if. except in purely declarative languages (such
as the A-calculus and logic and so forth). This is to say that
without some account of the effect on the processor of one
fragment of a whole linguistic structure. it may be impossible
to say what that processor will take another fragment as
designating. The use of SETQ in LISP is an example; natural
language instances will be explored. below.

This last point needs a word of explanation. It is of course possible
to specify '" in mathematical terms without any explicit·mention of a
",-like function; the approach we usc in LISP defines both '" and ~

in terms of the overarching function :& mentioned above. and we
could of course simply define '" without defining 'if at all. Our
point, rather, is that any successful definition of '" will effectively

12

have to do the work of 'if, more or less explicitly, either by defining
some identifiable relationship, or else by embedding that relationship
within the meta-theoretic machinery. We are arguing, in other
words. only that the subject we intend'" to cover must be treated in
some fashion or other. .

What is perhaps surprising about all of this machinery is that
it must be brought to bear on a purely procedural language - all
three relationships (e. ~. and '!') figure crucially in an account even
of LISP. We are not suggesting that LISP is like natural languages:
to point out just one crucial difference. there is no way in LISP or in
any other programming language (except PROLOG) to sa)! anything.
whereas the ability to say things is clearly a foundational aspect of
any human language. The problem in the procedural languages is
one of what we may call assertional force; although it is possible to
construct a sentence-like expression with a clear declarative semantics
(such as some equivalent of "x • 3"), one cannot use it in such a
way as to actually mean it - so as to have it carry any assertional
weight For example, it is trivial to set some variable x to 3. or to
ask whether x is 3. but there is no way to state that x is 3. It should
be admitted, however. that computational languages bearing
assertional force are under considerable current investigation. This
general interest is probably one of the reasons for PROLOG'S emergent
popularity; other computational systems with an explicit declarative
character include for example specification languages. data base
models, constraint languages. and knowledge representation
languages in A.I. We can only assume that the appropriate
semantics for all of these formalisms will align even more closely
with an illuminating semantics for natural language.

What does all of this have to do with natural language, and
with computational linguistics? The essential point is this: if this
characterisation· of formal systems is tenable, and if the techniques of
standard programming language semantics can be fit into this mOUld.
then it may be possible to combine those approaches with the
techniques of programming language semantics and of logic and
model theories, to construct complex and interacting accounts of '"
and of "'. To take just one example. the techniques that are used to
construct math,ematical accounts of environments and continuations
might be brought to bear on the issue of dealing with the complex
circumstances involving discourse models, theories of focus in
dealing with anaphora. and so on; both cases involve an attempt to
construct a recursively specifiable account of non-local interactions
among disparate fragments of a composite text But the
contributions can proceed in the other direction as well: even from a
very simple application of this framework to this circumstance of
LISP, for example. we have been able to show how an accepted
computational notion fails to cohere with our attributed linguistically
based understanding, involving us in a major reconstruction of LISP'S

foundations. The similarities are striking.

Our claim, in sum. is that similar phenomena occur in
programming languages and natural languages, and that each
discipline could benefit from the semantical techniques developed in
the other. Some examples of these similar phenomena will help to
motivate this view. The first is the issue ~ ... {to,_ appropriate use of
noun phrases: as well as employing a noun phrase in a standard
el~lOnal position, natural language semantics has concerned itself
with more difficult cases such as intensional contexts (as in the
underlined designator in I didn't know The Big Apple was an island,
where the co-designating term New York cannot be substituted
without changing the meaning). the so-called attributive/refererrtial

distinction of Donellan19 (the difference, roughly, between using a
noun phrase like "the man with a martini" to inform you that
someone is drinking a martini, as opposed to a situation where one
uses the hearer's belief or assumption that someone is drinking a
martini to refer to him), and so on. Another example different from
either of these is provided by the underlined term in For the next 20
;;ears let's restrict the president's salary to $20,000, on the reading in
which after Reagan is defeated he is allowed to earn as much as he
pleases, but his successor comes under our constraint. The analagous
computational cases include for example the use of an expression
like (the formal analog ot) make the sixth array element be 10 (i.e.,
A(6) :: = 10). where we mean not that the current sixth element
should be 10 (the current sixth array element might at the moment
lie 9, and 9 can't be 10), but rather that we would like the
description "the sixth arrav element" to refer to 10 (so-called "L
values", analogous to MACLISP'S SEn construct). Or, to take a
different case, suppose we say set X to the sixth array element (i.e., x
:: = A(6», where we mean not that X should be set to the current
:lixth array clement, but that it should always be equal to that
element (stated computationally this might be phrased as saying that
)(should track A(6); stated linguistically we might say that X should
mean "the sixth array element"). Although this is not a standard
type of assignment, the new constraint languages provide exactly
$uch facilities, and macros (classic computational intensional
operators) can be used in more traditional languages for such
purposes. Or, for a final example, consider the standard declaIation:
INTEGER x, in which the term "x" refers neither to the variable itself
(variables are variables, not numbers), nor to its current designation,
but rather to whatever will satisfy the description "the value of x" at
any point in the course of a computation. All in all, we cannot
ignore the attempt on the computationalists' part to provide complex
mechanisms so strikingly similar to the complex ways we use noun
phrases in English.

A very different sort of lingusitic phenomenon that occurs in
both programming languages and in natural language are what we
might call "premature exits": cases where the processing of a local
fragment aborts the standard interpretation of an encompassing
discourse. If for example I say to you I lVas walking down the street
that leads to the house that Mary's aunt used to ... fOrget it; I was
taking a walk, then the "forget it" must be used to discard the
analysis of some amount of the previous sentence. The grammatical
structure of the subsequent phrase determines how much has been
discarded, of course; the sentence would still be comprehensible if
the phrase "an old house I like" followed the "forget it". We are
not accustomed to semantical theories that deal with phenomena like
this, of course, but it is clear that any serious attempt to model real
language understanding will have to face them. Our present point is
merely that continuations20 enable computational formalisms to deal
exactly with the computational analogs of this: so-called escape
operators like MACLISP'S THROW and CATCH and QUIT.

In addition, a full semantics of language will want to deal
with such sentences as If by ''flustra/ed'' you mean what I think, then
she was certainly flus/rated. The proper treatment of the first clause
in this sentence will presumably involve lots of "'\''' sorts of
considerations: its contribution to the remainder of the scntence has
more to do with the mental states of speaker and hearer than with
the world being describc by the presumed conversation. Once again,
the overarching computational hypothesis suggests that the way these
psychological effects must be modelled is in terms of alterations in

13

:he state of an internal process running over a field of computational
structures,

As well as these specific examples, a couple of more general
morals can be drawn, important in that they speak directly to styles
of practice that we see in the literature. The first concernS the
suggestion, apparently of some currency, that we reject the notion of
logical form, and "do semantics directly" in a computational model
On our account this is a mistake, pure and simple: to buy into the
computational framework is to believe that the ingredients in any
computational process are inherently linguistic, in need of
interpretation. Thus they too will need semantics; the internalisation
of English into a computer (e) is a translation relationship (in the
sense of preserving 01>, presumably) - even if it is wildly contextual,
and even if the internal language is very different in structure from
the structure of English. It has sometimes been informally
suggested, in an analogous vein, that Montague semantics cannot be
taken seriously computationally, because the models that Montague
proposes are "too big" - how could you possibly carry these infinite
functions around in your head, we are asked to wonder. But of
course this argument comits a use/mention mistake: the only valid
computational reading of Montague would mean that mentalse ($)
would consist of designators of the functions Montague proposes,
and those designators can of course be a few short formulae,

It is another consequence of our view that any semanticist
who proposes some kind of "mental structure" in his or her account
of language is commited to providing an interpretation of that
structure. Consider for example a proposal that posits a notion of
"focus" for a discourse fragment. Such a focus might be viewed as a
(possibly abstract) entity in the world, or as a element of
computational structure playing such-and-such role in the
behavioural model of language understanding. It might seem that
these are alternative accounts: what our view insists is that an
interpretation of the latter must give it a designation (4)); thus there
would be a computational structure (being biased, we will call it the
fOcus-designator), and a designation (that we call the focus-itself).
The complete account of focus would have to specify both of these
(either directly, or else by relying on the generic declarative
semantics to mediate between them), and also tell a story about how
the focus-designator plays a causal role ('it) in engendering the
proper behaviour in the computational model of language
understanding.

There is one final problem to be considered: what it is to
design an internal fOimalism $ (the task, we may presume, of anyone
designing a knowledge representation language). Since, on our view,
we must have a semantics, we have the option either of haVing the
semantics informally described (or, even worse. tacitly assumed), or

else we ean present an explicit account, either by defining such a
story ourselves or by borrowing from someone else. If the LISP case
can be taken as suggestive. a purely declarative model theory will be
inadequate to handle the sorts of comptuational interactions that
programming languages have required (and there is no a priori

reason to assume that successful computational models for natural
language will be found that are simpler than the programming
languages the community has found necessary for the modest sorts
of tasks computers are presently able to perform). However it is also
reasonable to expect that no direct analog to programming language
semantics will suffice, since they have to date been so concerned
with purely procedural (behavioural) consequence. It seems at least

*

reasonable to suppose that a general interpretation function, of the ~

sort mentioned earlier, may be required.

Consider for example the KlONE language presented by
Brachman et aL 21 Although no semantics for KlONE has been
presented, either procedural or declarative, its proponents have
worked both in investigating the' a-semantics (how to translate
English into KLONE), and in developing an informal account of the
procedural aspects. Curiously, recent directions in that project would
suggest that its authors expect to be able to provide a "declarative
only" account of KLONE semantics (i.e., expect to be able to present
an account of '" independent of 'i'), in spite of our foregoing
remarks. Our only comment is to remark that independence of
procedural consequence is not a pre-requisite to an adequate
semantics; the two can be recursively specifiable together; thus this
apparent position is stronger than formally necessary - which makes
it perhaps of considerable interest.

In sum, we claim that any semantical account of either natural
language or computational language must specify e, 'i', and "'; if any
are left out, the account is not complete. We deny, furthennore, that
there is any fundamental distinction to be drawn between so-called
procedural languages (of which LISP is the paradigmatic example in
AJ.) and other more declarative languages (encodings of logic, or
representation languages). We deny as well, contrary to at least
some popular belief, the view that a mathematically welt-specified
semantics for a candidate "mentalese" must be satisfied by giving an
independently specified declarative semantics (as would be possible
for an encoding of logic, for example). The designers of KRL,22 for
example, for principled reasons denied the possibility of giving a
semantics independent of the procedures in which the KRL structures
participated; our simple account of LISP has at least suggested that
such an approach could be pursued on a mathematically sound
footing. Note however, in spite of our endorsement of what might
be called a procedural semantics, that this in no way frees one from
from giving a declarative semantics as well; procedural semantics and
declarative semantics are two pieces of a total story; they are not
alternatives.

NOTES

I am grateful to Garbara Grosz and Hector Levesque for their
comments on an earlier draft of this short paper, and to Jane
Robinson for her original suggestion that it be written.

1. Smith (1982b)

2. Fodor (1978), Fodor (1980), Haugeland (forthcoming)

3. At least until the day arrives - if ever - when a successful
psychology of language is presented wherein all of human
semanticity is explained in non-semantical terms.

4. Problematic because it defines computation in a manner that is
derivative on mind (in that language is fundamentally a mental
phenomenon), thus dashing the hope that computational
pSyt.Hd06Y will offer a release from the semantic irreducibility
of previous accounts of human cognition. lbough we state this
position and explore some of its consequences in Smith (1982b),
a considerably fuller treatment will be provided in Smith
(forthcoming).

5. See for example Newell (1980)

14

6. The term "semantics" is only one of a large collection of terms,
unfortunately, that are technical terms in computer science and
in the attendant cognitive disciplines (including logic, philosophy
of language, linguistics, and psychology), with different
meanings and different connotations. Reference, interpretation,
memory, and value are just a few examples of the others. It is
our view that in spite of the fact that semantical vocabulary is
used in different ways, the fields are both semantical in
fundamentally the same ways: a unification of terminology
would only be for the best.

7. An example of the phenomenon noted in footnote 6.

8. Fodor (forthcoming)

9. Woods (1981)

10. For a discussion of continuations see Gordon (1979), Steele and
Sussman (1978), and Smith (1982a); the formal device is
developed in Strachey & Wadsworth (1974).

11. Smith (1982a).

12. A classic example is Katz and Postal (1964), but much of the
recent A.I. research in natural language in A.I. can be viewed in
this light

13. Lewis (1972).

14. Israel (1980).

15. For a discussion of PROLOG see Oocksin & Mellish (1981); the
LISPS are described in Smith (19813).

16. Smith (forthcoming).

17. Fodor (forthcoming).

18. The term "methodological solipsism" is from Putnam (1975); see
also Fodor (1980).

19. Dannenan (1966).

20. See note 10, above.

21. Brachman (1979).

22. Bobrow and Winograd (1977).

REFERENCFS

Bobrow, Daniel G., and Winograd, Terry, "An Overview of KRL: A
Knowledge Representation Language", Cognitive Science 1 pp. 3
46, 1977.

Brachman, Ronald, "On the Epistemological Status of Semantic
Networks", in Findler~ Nicholas V. (ed.), Associative Networks:
Representation and Use of Knowledge by Computers, New York:
Academic Press, 1979.

Clocksin, W. F., and Mellish, C. S., Programming in Prolog, Berlin:
Springer-Verlag, 1981.

Donnellan, K., "Reference and Definite Descriptions", Philosophical
Review 75:3 (1966) pp. 281-304; reprinted in Rosenberg and
Travis (eds.), Readings in the Philosophy of Language, Prentice
Hall, 1971.

Fodor, Jerry, "Tom Swift and his Procedural Grandmother",
Cognition 6, 1978; reprinted in Fodor (1981).

-- , "Methodological Solipsism Considered as a Research
Strategy in Cognitive Psychology", The Behavioral and Brain
Sciences. 3:1 (1980) pp. 63-73: reprinted in Haugeland (cd.),
Mind Design, Cambridge: Gradford, 1981, and in Fodor (1981).

Israel, David, "What's Wrong with Non-Monotonic Logic1",
Proceedings of the First Annual Conference of the American
Association for Artificial Intelligence, Stanford, California, 1980,
pp. 99-101.

Katz. Jerrold, and Postal, Paul, An Integrated Theory of Linguistic
Descriptions, Cambridge: M.LT. Press, 1964.

Lewis, David, "General Semantics", in Davidson and Harman (eds.),
Semantics 0/ Natural Langauges, Dordrecht, Holland: D. Reidel,
1972, pp. 169-218.

Newell, Allen, "Physical Symbol Systems", Cognitive Science 4, pp.
135-183, 1980,

Putnam, Hilary, "The meaning of 'meaning''', in Putnam, Hilary,
Mind, Language and Reality, Cambridge, U.K.: Cambridge
University Press, 1975.

Smith, Brian C., Reflection and Semantics in· a Procedural Language,
Laboratory for Computer Science Report LCS·TR·272, M.I.T.,
Cambridge, Mass., 1982 (a).

-- , "Semantic Attribution and the Formality Condition",
presented at the Eighth Annual Mecting of the Society for
Philosophy and Psychology, London, Ontario, Canada, May 13
16, 1982 (b).

15

-- , The Computational Metaphor, Cambridge: Bradford
(forthcoming).

Stcele, Guy, and Sussman, Gerald 1., "The Art of the Interpreter, or
the Modularity Complex (parts Zero, One, and Two)", M.I.T.
Artificial Intelligence Laboratory Memo AIM-453, Cambridge,
Mass, 1978.

Strachey, C.. and Wadsworth, C. P., "Continuations - a
Mathematical Semantics for Handling Full Jumps", PRG·H,
Programming Research Group, University of Oxford, 1974.

Woods, William A., "Procedural Semantics as a Theory of Meaning",
Report No. 4627, Bolt Beranek and Newman, 50 Moulton St,
Cambridge, Mass., 02138; reprinted in Joshi, A., Sag, 1., and
Webbcr, B., Computational Aspects 0/ Linguistic Structures and
Discourse Sel/ings, Cambridge, U.K.: Cambridge University
Press, 1982.

